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Abstract. In this letter, we discuss a four-dimensional model with modulus fields which are responsible for
supersymmetry breaking. Given a non-trivial moduli dependence of the action, the model is found to give a
proper description of higher-dimensional supersymmetry breaking. We explicitly calculate the gaugino and
scalar mass spectrum and show that several classes of scenarios proposed in the literature are described
in certain regions of the parameter space of the moduli vacuum expectation values. The model in other
generic regions of the moduli space gives unexplored scenarios (mass spectra) of supersymmetry breaking
in four dimensions.

1 Introduction

Supersymmetry is one of the most interesting ideas which
have been introduced to overcome some unsatisfactory
points of the standard model. For example, the gauge cou-
pling unification based on precise electroweak measure-
ments [1] and the stability of the Planck/weak mass hier-
archy [2] are great successes of phenomenological applica-
tions of supersymmetry. It is, however, experimentally cer-
tain that supersymmetry is broken above the weak scale,
while a variety of mechanisms for supersymmetry break-
ing have been proposed so far.

Among these, the mechanisms which are involved in
higher-dimensional physics have been extensively studied
in various ways. The existence of extra spatial dimen-
sions provides novel ways to break supersymmetry and
to communicate it to our four-dimensional world, which
is the low-energy effective theory of the models. A well-
known framework is string-inspired four-dimensional su-
pergravity [3]. In large classes of these models, there are
two modulus fields concerned with the compactified ex-
tra dimensions, called the dilaton and the overall modu-
lus, which are assumed to develop non-vanishing vacuum
expectation values (VEV) in their auxiliary components.
The supersymmetry-breaking effect is transmitted to our
low-energy degrees of freedom via (super-) gravity inter-
actions. There have been other interesting mechanisms
for supersymmetry breaking with extra dimensions [4].
These approaches provide phenomenologically viable par-
ticle spectra due to the intrinsic nature of higher-dimen-
sional theories.
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In this letter, we present a purely four-dimensional
framework which can describe supersymmetry breaking
in the bulk. To this end, it is convenient to regard extra
dimensions as being latticized [5,6]. With this method, it
is possible to revisit many interesting features of higher-
dimensional effects from the four-dimensional point of
view [7]. Thus, models can incorporate various four-di-
mensional mechanisms, such as the ones for flavor prob-
lems, and at the same time utilize the five-dimensional
nature stated above. We study a model with two types
of modulus fields which are supposed to have supersym-
metry-breaking VEVs. Given non-trivial moduli depen-
dences of the action, it is found that certain limits in this
two-dimensional parameter space of VEVs reproduce the
mass spectra of the bulk scenarios in the literature. Other
generic regions of the moduli space give unexplored sce-
narios for supersymmetry breaking.

In Sect. 2, we explain our setup and briefly touch on the
spectrum of vector fields. Supersymmetry breaking (non-
zero F -terms) in this model is discussed in Sect. 3, where
we identify various modulus fields and reveal their connec-
tions in the light of the construction of model. In Sect. 4,
we calculate the mass spectrum of the vector multiplets
with the non-vanishing moduli F -terms, and show typi-
cal mass splitting in the limits that correspond to var-
ious supersymmetry-breaking mechanisms in higher di-
mensions. Section 5 is devoted to a summary of our re-
sults.

2 Model

We consider a four-dimensional supersymmetric gauge
theory with N copies of the gauge groups GN = G1 ×
G2 · · · × GN . We assume that, for simplicity, all the Gi of
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Table 1. The matter content

G1 G2 G3 · · · GN

Q1 � � 1 · · · 1
Q2 1 � � · · · 1
...

...
...

...
. . .

...
QN � 1 1 · · · �

the gauge theories have the same structure and particu-
larly have a common gauge coupling g. The N = 1 vec-
tor multiplet Vi of the Gi gauge theory contains a gauge
field Ai

µ and a gaugino λi. In addition, there are N = 1
chiral multiplets Qi ( i = 1, · · · , N) in the bifundamen-
tal representation, that is, Qi transforms as (�, �) under
the (Gi, Gi+1) gauge symmetries. The fields Qi are re-
ferred to as link variables in that they link two neigh-
boring gauge theories. The field content of the theory
is summarized in Table 1. It is shown that this simple
model can imitate a five-dimensional theory with bulk
gauge multiplets [5,6]. Consider the link variables Qi de-
veloping vacuum expectation values proportional to the
identity, 〈Q1〉 = · · · = 〈QN 〉 = v.1 Below the scale ∼
gv, the gauge symmetries are reduced to a diagonal sub-
group G and the other gauge multiplets become massive
with discrete mass spectrum. This just looks like a five-
dimensional G gauge theory compactified on a circle S1,
resulting in Kaluza–Klein mass spectra. Note here that
we make the simple assumption for the bulk theory of
being five-dimensional Lorentz invariant; the gauge cou-
plings and VEVs of Qi take common values. This way of
deconstructing or of latticized dimensions is useful in that
one can study higher-dimensional theories from a familiar
four-dimensional point of view.

We here briefly review the mass spectrum of the gauge
bosons in this model [5,6]. The complete Lagrangian and
mass spectra are given later. The mass matrix is derived
from the Kähler term of the Qi fields, which gives

L =
1
2
k2g2v2Ai

µMijA
µ j , (2.1)

where we have not written the implicit dependence of the
gauge indices, and k is the normalization factor of the link
variables that could depend on the gauge coupling g (see
the Lagrangian in (4.1)). The matrix M is

M =


2 −1 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 −1 2

 . (2.2)

From this, one obtains the mass eigenvalues m2
n and the

corresponding eigenstates Ãn, labelled by an integer n (the
Kaluza–Klein level),

1 The diagonal form of the VEVs is provided, for exam-
ple, by the superpotential introduced in [5,8], which gives
(supersymmetry-breaking) masses only to the trace part of Qi,
and does not affect the discussion below

m2
n = 4k2g2v2 sin2 nπ

N
, (2.3)

Ãn
µ =

1√
N

N∑
j=1

(ωn)jAj
µ (n = 0, · · · , N − 1), (2.4)

where ωn = e2πin/N . One can see that there is a massless
gauge boson and in addition a Kaluza–Klein tower of mas-
sive gauge fields, the low-lying modes (n � N) of which
gauge bosons have masses approximately written as

mn � 2kgv
nπ

N
=

n

R
, (2.5)

where we identify the compactification radius as 2πR =
N/kgv. The mass term (2.1) becomes the kinetic energy
transverse to the four-dimensions in the continuum limit
(N → ∞).

3 Moduli and supersymmetry-breaking
scenarios

3.1 Moduli

A supersymmetry-breaking scenario in this type of mod-
els was examined in [8,9] assuming that supersymmetry-
breaking dynamics is on one endpoint of the lattice sites.
From a five-dimensional viewpoint, that corresponds to
supersymmetry being broken only on a four-dimensional
space like the gaugino mediation [10].

In this work, we study supersymmetry breaking in the
above four-dimensional model. To have insights into bulk
symmetry breaking, there need to be some modulus fields
which are commonly coupled to any multiplet in the the-
ory. Here we consider two candidates of these moduli.
One is the dilaton field S. One may define a modulus
Si for each gauge group whose scalar component gives
a gauge coupling constant gi. As noted before, however,
they have to interact with a universal strength in order
for this model to describe a proper five-dimensional the-
ory (on the flat background). In what follows, we there-
fore assume S ≡ S1 = · · · = SN . We have also assumed
the universal value v for the VEVs of the link variables.
Another modulus we will consider is referred to as Q; it
gives this universal VEV. The modulus Q may be a nor-
malized composite field of the Qi. We take the modulus
forms which are invariant under a translation transverse
to the four dimensions, for simplicity. Non-universal values
of couplings and VEVs may be interpreted as the presence
of brane-like interactions and/or curved backgrounds, and
that issue will be studied elsewhere.

These modulus fields may have some connections with
spacetime symmetries since the modulus S corresponds to
dilatation and Q relates to the size of the compactification
radius. It should be noticed that, exactly speaking, S is
neither a four- nor a five-dimensional dilaton, and it might
not be correct to take Q to be the radion. In our model,
all of these are not independent variables as will be seen
below.
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Let us discuss the relations between these combina-
tions of modulus fields. First we have the dilaton S and
the modulus Q whose VEVs are assumed to be

S =
1

4g2 + FSθ2, (3.1)

Q = v + FQθ2. (3.2)

In addition to these, we define the (combinations of) mod-
uli fields that give the following VEVs:

S4 =
1

4g2
4

+ FS4θ
2, (3.3)

S5 =
1

4g2
5

+ FS5θ
2, (3.4)

T =
1
R

+ FT θ2, (3.5)

where g4, g5 are the effective four- and five-dimensional
gauge couplings, and R is the compactification radius of
extra dimensions. By comparing the low-energy descrip-
tion of the model (at the energy below ∼ v) with Kaluza–
Klein theory, the following tree-level relations among the
parameters are found [5,6]2:

1
2πR

=
kgv

N
, g2

4 =
g2

N
. (3.6)

The first equation is required to match the spectrum to
that of Kaluza–Klein theory, and the second equation can
be regarded as a volume suppression of the bulk gauge
coupling. In addition, the five-dimensional gauge coupling
is defined (irrespectively of how to get a five-dimensional
model) by

g2
5 = 2πRg2

4 , (3.7)

which comes from the normalization of the gauge kinetic
terms. These relations among the couplings suggest that
the modulus fields satisfy the relations

S4 = NS, (3.8)

S5 =
1
2
QS1/2k(S), (3.9)

T =
π

N
QS−1/2k(S). (3.10)

The appropriate form of the factor k(S) will be fixed in
the next section by holomorphy and other phenomeno-
logical arguments. From these, we see that S4, S5 and T
are expressed in terms of the two moduli S and Q. Of
course every choice of two independent moduli such as
(S, S5), (S4, T ) et cetera can describe the same physics,
and in the present four-dimensional model a natural choice
is (S, Q). Each set of non-vanishing F -terms corresponds
to one supersymmetry-breaking scenario.

2 The 1PI and holomorphic gauge couplings differ only at
higher-loop level in perturbation theory

Extracting the θ2-terms, we obtain the F -components
of the moduli

FS4 = NFS , (3.11)

FS5 =
kv

4g

(
FQ

v
+ 2g2

(
1 + 2

〈
∂ ln k(S)
∂ lnS

〉)
FS

)
, (3.12)

FT =
2πkgv

N

×
(

FQ

v
− 2g2

(
1 − 2

〈
∂ ln k(S)
∂ lnS

〉)
FS

)
. (3.13)

It is emphasized that the four-dimensional dilaton S4 is
almost close to the dilaton S, but its F -term satisfies the
relation

FS4

〈S4〉 =
FS5

〈S5〉 − FT

〈T 〉 , (3.14)

independently of the detailed form of k(S). Notice that
this relation comes out through (3.7), which implies that
S4 depends on the radion T and the five-dimensional dila-
ton S5.

In the next section, we will discuss supersymmetry-
breaking effects of these moduli and calculate the spar-
ticle mass spectrum of the model. When introducing ap-
propriate potentials for the modulus fields, their VEVs
are fixed to some region or point in the moduli space of
vacua. For example, since S is the dilaton for each gauge
group, dilaton stabilization mechanisms proposed in the
literature are easily incorporated in our framework. The
situation is similar for the modulus Q, corresponding to
the radion. Moreover in describing five-dimensional the-
ory, Q is actually assumed to be stabilized by relevant su-
perpotential terms as in [5,8]. It is therefore understood
that the deformation of (superpotential) terms could also
induce a supersymmetry-breaking VEV of Q. However,
instead of doing that, we study a more generic case. That
is, in this letter we investigate the whole parameter space
of the moduli F -terms, and then focus on several lim-
its corresponding to bulk supersymmetry-breaking sce-
narios. We do not try to construct specific dynamics for
modulus fields to have a five-dimensional nature by tun-
ing the potential couplings, since our aim here is not to
present five-dimensional theories. It is only the specific
region of moduli space where our model reproduces the
known bulk supersymmetry-breaking scenarios. In other
words, the present framework contains unexplored four-
dimensional phenomena of supersymmetry breaking. It
should be noted that the tree-level mass formulae given
in the next section are not modified by the existence of
moduli potentials. The only possible case where the mass
formula might be affected is that potentials for moduli
stabilization contain the multiplets for which one wants
to calculate their spectrum. We do not consider such a
peculiar case in this letter.

3.2 Supersymmetry breaking in the bulk

So far, various supersymmetry-breaking models have been
discussed in the literature within the frameworks of the
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concern with higher-dimensional physics, and several ex-
amples are mentioned in the Introduction. In the follow-
ing, we will particularly focus on the dilaton and moduli
dominated supersymmetry breaking in the string-inspired
four-dimensional supergravity [3] and supersymmetry
breaking by the radion F -term [11,12]. Here one should
pay attention to relevant choices of modulus F -terms in
examining supersymmetry-breaking models. That is, four-
dimensional (low-energy effective) theories know FS4 and
FT as fundamental quantities, but on the other hand, five-
dimensional ones have FS5 and FT . This point is impor-
tant to the following discussion.

The dilaton dominance scenario is the four-dimensional
supergravity specified by a non-vanishing F -term of the
four-dimensional dilaton S4 and negligible contribution
from the overall modulus T . We find from the result in the
previous section that in the model where the appropriate
modulus fields are S and Q, the scenario is described by
FS 
= 0 and FQ = 2g2v

(
1 − 2

〈
∂ ln k(S)

∂ ln S

〉)
FS . The VEVs

of the four- and five-dimensional dilaton F -terms are then
found to be FS4/ 〈S4〉 = FS5/ 〈S5〉 = FS/ 〈S〉.

On the other hand, the moduli domination is also the
four-dimensional model characterized by the opposite
limit of F -terms; a non-zero FT and a vanishing dilaton
F -term, FS4 = 0. In a typical spectrum of this scenario,
gauginos are massless at tree level. This is because the
string perturbation theory shows that the gauge kinetic
function, which induces gaugino masses, depends only on
S4 at tree level. This limit of F -terms is translated into
the present model as FS = 0 and FQ 
= 0. The other mod-
ulus F -components are then given by FS5 = (k/4g)FQ

and FT = (2πkg/N)FQ.
The field-theoretical model similar to the moduli-

dominated supersymmetry breaking is discussed in [13].
This Kaluza–Klein mediation model is a four-dimensional
effective theory and has the identical F -term VEVs as
those in the moduli domination. Sparticle mass spectra in
this case are easily calculated from renormalization-group
functions in four dimensions, and the mechanism has a
wide variety of realistic model construction.

A related idea utilizing FT supersymmetry breaking
is suggested in the radion mediation model. It is a five-
(or higher) dimensional model, and therefore a reasonable
choice of two independent moduli is T and S5. The radion
mediation is thus defined by FT 
= 0 and FS5 = 0. In
turn, this corresponds to FS 
= 0 and FQ = −2g2v

(
1 +

2
〈

∂ ln k(S)
∂ ln S

〉 )
FS in the present model. As a result, the

four-dimensional dilaton F -term becomes

FS4 =
−N

2g2v

(
1 + 2

〈
∂ ln k(S)
∂ lnS

〉)−1

FQ

=
−N2

8πkg3v
FT . (3.15)

This means that we have the four-dimensional gaugino
mass mλ = −FS4/2 〈S4〉 = FT /2 〈T 〉, which agrees with
the result of zero-mode gaugino mass in [12].

In this way, we show via deconstruction that various
known supersymmetry-breaking scenarios can be seen by
the difference in the choices of non-zero modulus F -terms
(as summarized in Table 2). The parameter space spanned
by two independent F -terms is therefore the space of su-
persymmetry breaking in the bulk, and several special lim-
its in this parameter space correspond to the scenarios
which have been discussed in the literature.

4 Spectrum

In this section, we explicitly show the resulting supersym-
metry-breaking spectrum of Kaluza–Klein modes. We here
focus on the vector multiplets, but the quantitative as-
pects discussed below are completely the same for bulk
hypermultiplets.

Since we consider broken gauge symmetries and mas-
sive gauge fields, it is convenient to use the unitary gauge
for vector multiplets. In this gauge, the Goldstone chiral
multiplets (the fluctuations around the VEVs (3.2)) are
absorbed into the vector multiplets with suitable gauge
transformations. Consequently each vector multiplet con-
tains a massive vector field and two spinors, a gaugino
and a Goldstone fermion. In addition, other dynamical
and auxiliary bosonic components are introduced. The
link variables Qi are then treated as background fields
with non-zero VEVs.

First it is easily found that the gauge fields do not
get a supersymmetry-breaking contribution, and the mass
spectrum is just given by the one calculated in Sect. 2;
one massless gauge multiplet corresponding to the diago-
nal subgroup G and the Kaluza–Klein tower with discrete
mass spectrum (2.3).

The gauge fermion masses with supersymmetry break-
ing are calculated as follows. The relevant piece of the
Lagrangian is

L =
∑

i

[∫
d2θ SWiWi + h.c.

+
∫

d2θd2θ̄ K(S, S†) Q†
i e

∑
V Qi

]
. (4.1)

We have included the universal couplings of the dilaton
S. The relevant field to appear here is S, and not the
effective four- or five-dimensional dilaton S4, S5. The real
function K(S, S†) fixes the overall scale of the discrete
mass spectra of this model (k = 〈K|θ=0〉1/2) and its form
will be determined later. Inserting the VEVs of (3.1) and
(3.2), the mass terms take the following form:

Lmass = −FSλiλi − k2v2χiMijλj (4.2)

+
1
2
k2v

(
FQ + v

〈
∂ lnK(S, S†)

∂ lnS

〉
FS

)
χiMijχj + h.c. ,

where χi is the Goldstone fermion now included in the
vector multiplet Vi. The first term comes from the gauge
kinetic term and the last two are induced by the tree-level
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Table 2. The moduli F -terms and the typical supersymmetry-breaking models in
the bulk. The parameter x is defined by x ≡ 2

〈
∂ ln k(S)

∂ ln S

〉
. The holomorphy and some

phenomenological arguments suggest x = 1 and k = 1/g

FS FQ FS4 FS5 FT

dilaton
(FT = 0) FS 2g2v(1 − x)FS NFS kgvFS 0

moduli
(FS4 = 0) 0 FQ 0

k

4g
FQ

2πkg

N
FQ

radion
(FS5 = 0)

−FQ

2g2v(1 + x)
FQ

−NFQ

2g2v(1 + x)
0

4πkg

N(1 + x)
FQ

Kähler term of Qi, so the flavor structure is the same as
that of the gauge fields, which is explained by the matrix
M ; see (2.2). Since M also defines the kinetic terms of
the χi, the canonically normalized fields are obtained by
the redefinition kvPχ → χ where P is a square-root of M
(M = P tP ) and we can write

P =


1 −1

. . . . . .
1 −1

−1 1

 . (4.3)

With this redefinition and a rescaling λ → gλ, the mass
matrix of the normalized spinors becomes

Lmass

= −1
2

( λ χ )

2g2FS kgvP t

kgvP −FQ

v −
〈

∂ ln K(S,S†)
∂S

〉
FS

 (
λ
χ

)
+h.c. (4.4)

Without the F -term contributions, the mass eigen-
states take the same form as the gauge fields. This is an
indication of N = 2 supersymmetry; equivalently: N = 1
supersymmetry in five dimensions, which is expected to
appear in the infrared. In this mass basis of λ̃n and χ̃n,
the mass matrix is rewritten as follows:

Lmass

= −1
2

(
λ̃ χ̃

) 2g2FS B

B −FQ

v −
〈

∂ ln K(S,S†)
∂S

〉
FS

 (
λ̃
χ̃

)
+h.c. , (4.5)

where the elements of the diagonal matrix Bij = 2kgv

× sin jπ
N δij are the Kaluza–Klein Dirac masses. The ir-

relevant phase factors have been absorbed in the field re-
definitions. We finally obtain the mass eigenvalue of the
level-n Kaluza–Klein gauge fermions (n = 0, · · · , N − 1);

mλn

= 1
2


 ±

√
4m2

n +
(

FQ

v
+ 2g2

(
1 + 2

〈
∂ ln K(S, S†)

∂ ln S

〉)
FS

)2

−FQ

v
+ 2g2

(
1 − 2

〈
∂ ln K(S, S†)

∂ ln S

〉)
FS


, (4.6)

where mn is the Kaluza–Klein mass of the gauge fields
(2.3), which is a supersymmetric contribution. The posi-
tive (negative) sign in the bracket corresponds to the gaug-
ino (the Goldstone fermion) mass. Here the states which
are equal to λ̃, χ̃ in the supersymmetric limit are referred
to as gauginos and Goldstone fermions, respectively. It is
interesting to note that the gauge fermion mass (4.6) can
be more simply expressed with only the five-dimensional
quantities:

mλn =
1
2

±
√

4m2
n +

(
FS5

〈S5〉
)2

− FT

〈T 〉

 . (4.7)

This result implies that higher-dimensional effects, even
including supersymmetry breaking, are properly repro-
duced in our model.

We now examine our result for the supersymmetry-
breaking models discussed in the previous section.

4.1 Dilaton dominated supersymmetry breaking

This scenario is characterized by the limit FT = 0. We
then obtain the Kaluza–Klein masses with the supersym-
metry-breaking effect

mλn(dilaton) = ±
√

m2
n + (2g2FS)2. (4.8)

This spectrum is just as expected in the dilaton dominant
case in supergravity models. The first term in the square-
root is the Kaluza–Klein Dirac mass, and the second one
is a supersymmetry-breaking part that is certainly pro-
vided by the four-dimensional dilaton coupling (2g2FS =
FS4/2 〈S4〉). Note that all the Kaluza–Klein states includ-
ing zero modes receive the universal supersymmetry-
breaking contribution. The two level-n spinors are degen-
erate in mass, and the mass splitting between bosons and
fermions are equal for all Kaluza–Klein modes. This fact
is regarded as a reflection of the dilaton field (the action of
dilatation) commonly coupling to any field in the theory.
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The universal mass spectrum is one of the major moti-
vations to investigate the dilaton dominant limit in su-
pergravity models. The universality in our model is more
clearly seen for scalar components in hypermultiplets. In
that case, taking the FT = 0 limit washes away the bulk
mass dependence of the supersymmetry-breaking scalar
masses [14].

4.2 Moduli dominated supersymmetry breaking

With the definition of FS4 = 0, the gauge fermion mass
spectrum becomes

mλn(moduli, KK) = ±
√

m2
n +

(
FQ

2v

)2

− FQ

2v
. (4.9)

It is interesting that even when supersymmetry break-
ing is turned on, the zero-mode gaugino is massless and
does not get a mass splitting with the zero-mode gauge
field. (The n = 0 spinor being affected by the non-zero
F -terms is the Goldstone fermion χ̃0.) This is exactly
the spectrum predicted in this type of supersymmetry-
breaking scenario [3,13]. By definition, the scenario as-
sumes a vanishing F -term of the four-dimensional dila-
ton. The zero-mode gaugino mass is then shifted at loop
level by string threshold corrections or by the effects of
bulk fields. In our model, the spectrum is easily read from
the mass matrix (4.5). The gaugino λ̃0 is massless due
to the vanishing FS and the Kaluza–Klein mixing mass.
As for the excited modes, the supersymmetry-breaking
contribution from FQ is transmitted to gauginos through
the non-zero Kaluza–Klein masses. The situation is simi-
lar to the models where gauge multiplets behave as mes-
sengers, and sparticle soft masses at loop level are calcu-
lated from wave-function renormalization in four dimen-
sions [15]. Therefore our approach is also likely to describe
this limit well.

There may be an intuitive explanation for this type of
spectrum as was discussed in [13]. That is, a non-zero F -
term of the modulus which gives the Kaluza–Klein masses
does not induce tree-level supersymmetry-breaking masses
for zero modes, as these two mass terms are proportional
to the Kaluza–Klein numbers. In the present case, such a
modulus corresponds to the one whose scalar component
obtains a VEV ∝ 1/R, and is given by T ∝ Q. This inter-
pretation becomes manifest in examining the mass spectra
of bulk hypermultiplets with moduli fields [14].

4.3 Radion F -term breaking

This scenario takes the F -term assumption FS5 = 0, that
is converted into FQ = −2g2v

(
1 + 2

〈
∂ ln k(S)

∂ ln S

〉)
FS . We

find that the gaugino mass matrix (4.5) in this limit has
exactly the same form as calculated in [16], where one
uses an N = 1 superfield formalism of the five-dimensional
action with the radion superfield. The mass eigenvalues of
the Kaluza–Klein spinors become

mλn
(radion) = ±mn − FQ

v
−

〈
∂ ln k(S)

∂S

〉
FS . (4.10)

This scenario assumes a non-zero value of the radion F -
term. However, compared to the moduli dominance sce-
nario stated above, there is a difference in the contribution
from the dilaton field S, resulting in the non-zero F -term
of the four-dimensional dilaton S4. This gives a tree-level
mass of the gaugino zero mode. In other words, if the mod-
uli domination were seen from a five-dimensional view-
point, there would appear to be an additional contribu-
tion from S5 such that the definition FS4 = 0 is preserved
(see (3.14)). On the other hand, the masses of the Kaluza–
Klein excited modes are rather similar to each other. In
particular, the low-lying modes have masses

mλn(moduli, KK) = mλn(radion) � ± n

R
− R

2
FT , (4.11)

where we have assumed that the supersymmetry-breaking
part is smaller than the supersymmetric Kaluza–Klein
mass (i.e., RFT � v).

It has been shown [16,17] that the radion mediation
model has the same spectrum as that predicted by the
Scherk–Schwarz mechanism [18]. The Scherk–Schwarz
theory is essentially higher dimensional and adopts twisted
boundary conditions for the bulk fields along the extra
dimensions. On the other hand, the moduli-dominated
supersymmetry breaking in four-dimensional supergrav-
ity (and the Kaluza–Klein mediation) is not a Scherk–
Schwarz theory and does give different soft terms, as ex-
plicitly shown in the above.

Let us finally discuss the normalization function
K(S, S†) in the Lagrangian (4.1). It should be mentioned
that the form of the gaugino masses (4.7) is not affected
by any details of the factor K(S, S†), and the above qual-
itative discussions about the gaugino mass spectrum are
generic and still preserved. We propose that the proper
form of K is given by

K(S, S†) =
8

1/S + 1/S† . (4.12)

The factors k and k(S) defined in Sect. 2 then become
k = 1/g and k(S) = 2S1/2, respectively. Though the
complete form of K is not determined without referring
to higher-dimensional physics, (4.12) is found to be cer-
tainly consistent with several non-trivial and independent
requirements. First, notice that to have right results based
on holomorphy, the normalization of the link variables Qi

is required to be 〈K〉 = 1/g2. With this choice, the gauge
and adjoint chiral multiplets of the low-energy G gauge
theory have the same field normalization. Moreover, in
this case, the radion superfield in our model becomes inde-
pendent of the dilaton superfield (see the relation (3.10)),
which result is plausible since, for example, it does not
lead to an undesirable relation between the theta angle
and the graviphoton field.

Secondly, with an explicit form of K(S, S†), one can
evaluate tree-level masses of the scalar fields of the Qi.
They are the adjoint scalar fields of the low-energy G
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gauge theory, and are contained in vector multiplets of
the enhanced N = 2 supersymmetry. The scalar mass m2

c

generated by the Kähler term with (4.12) is

m2
cn

= m2
n + 2 Re

(
F ∗

S5

〈S5〉
FT

〈T 〉
)

. (4.13)

Let us examine this mass formula in the limits discussed
before. One can easily see that the radion mediation limit
(FS5 = 0) does not give a supersymmetry-breaking soft
mass. This indeed agrees with the fact that the radion me-
diation is equivalent to the Scherk–Schwarz mechanism,
which is now applied to the SU(2)R symmetry under
which the adjoint scalars are singlet and hence do not get
symmetry-breaking masses. If one first requires that the
scalars cn do not have soft terms in the FS5 = 0 limit,
K(S, S†) has to satisfy

〈
∂ ln K
∂S∂S†

〉
= −(2g2)2. The most

probable solution of this equation is K = X(S)X(S†)/
(S+S†), where X is an arbitrary function. Then the holo-
morphy argument suggests X(S) ∝ S and thus (4.12). For
completeness, we write down the scalar masses in the other
limits:

m2
cn

(dilaton) = m2
n,

m2
cn

(moduli, KK) = m2
n + 2

∣∣∣∣ FT

〈T 〉
∣∣∣∣2 . (4.14)

The third consistency concerns the 5-5 component of
the five-dimensional metric, g55. In a continuum five-di-
mensional theory, the kinetic energy terms of bosonic fields
along the fifth dimension have a dependence on g55 as√

g55 g55 ∝ 1/R. In the model at hand, the second term
in the Lagrangian (4.1) becomes this kinetic energy in the
continuum limit, and its modulus dependence is given by〈
K(S, S†) Q†Q

〉
. Equation (4.12) then indicates

〈
KQ2

〉 ∼〈
SQ2

〉 ∼ 〈S5T 〉. As a result, the desirable metric depen-
dence appears, for a fixed value of the five-dimensional
gauge coupling g5.

We close this section by a comment on the model which
turns into a five-dimensional theory compactified on an
S1/Z2 orbifold. This can be formulated [6,8] by getting
rid of a link variable, e.g. QN , from the S1 model. In this
case, additional fields may be introduced to cancel the
gauge anomalies on the orbifold fixed points. Examining
a mass matrix, it is found that the Qi contain only mas-
sive modes, and the zero-mode state consists of an N = 1
vector multiplet without an associated adjoint chiral mul-
tiplet, which situation corresponds to the Z2 orbifolding.
In turn, this results in removing χ̃0 and c0 in our analyses.
The plus sign is chosen for the zero mode, and the gaugino
masses in various limits discussed before are not altered.
Results similar to those as in the S1 case hold for the other
quantities; for example, the Kaluza–Klein mass spectrum
is unchanged except for replacing N → 2N (R → 2R).

5 Summary

In this paper, we have studied supersymmetry breaking
in the four-dimensional model with two types of modulus

fields. The model can describe five-dimensional physics in
the infrared, and given the relations among the modulus
fields, we have discussed supersymmetry breaking in the
higher-dimensional bulk. The analysis is based on a four-
dimensional model, that is renormalizable and calculable
in a usual manner. We have made it clear that several spe-
cific limits in the two-dimensional parameter space of the
modulus F -terms correspond to the bulk supersymmetry-
breaking scenarios in the literature. We have shown this
by examining the gaugino and adjoint scalar masses in
the cases of the S1 and S1/Z2 compactifications. It is
non-trivial to establish such correspondences and indeed
require a properly fixed moduli dependence of the action.
The moduli dependence will also be confirmed by detailed
calculations of radiative corrections to the mass spectrum
[14]. Moreover it would be an interesting issue to study
other choices of the couplings and limits, which could
describe unexplored supersymmetry breaking in four or
higher dimensions, and we leave this to future work. Be-
sides the issue of supersymmetry breaking, extra dimen-
sions provides a new perspective for various subjects in
particle physics. Realistic model construction along this
line of using a purely four-dimensional one will deserve
further investigations.
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